This is an advanced course on machine learning with graph-structured data, focusing on the recent advances in the field of graph representation learning. The goal is to provide a systematic coverage of the fundamentals and foundations of graph representation learning. The course will introduce the definitions of the relevant machine learning models (e.g., graph neural networks), discuss their mathematical underpinnings, formally study their properties (e.g., relational inductive bias, expressive power), and demonstrate ways to effectively develop and train such models.
After studying this course, students will:
Required background knowledge includes probability theory, linear algebra, continuous mathematics, multivariate calculus, and a basic understanding of graph theory and logic. Students are required to have already taken a machine learning course. Good programming skills are needed, and lecture examples and practicals will be given mainly in Python and PyTorch.
Introduction
Shallow embeddings